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ABSTRACT: Since the introduction of the Cray XT3, many performance improvements 
have been made in the MPT and portals software stack especially for dual-core support. 
Many of these are enabled by default but some require users to enable them. This paper 
will discuss these optimizations and show the measured performance improvements. In 
addition, key functional improvements will also be discussed. Planned MPT optimizations 
and functional improvements will be presented as well, including those being planned for 
Compute Node Linux.  
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1.   Intr oduction 

The software stack for Message Passing Toolkit 
(MPT) which contain the MPI and SHMEM libraries has 
been enhanced over the last year both in performance and 
functionality.  Some of these improvements were 
implemented in the MPI and SHMEM libraries and some 
in the underlying software such as portals.  This paper 
will discuss some of these improvements and present 
some measured improvements using the IMB/Pallas 
benchmarks.  In addition, several features that should 
become available in the next year will also be discussed. 

2. Portals Improvements 

The original implementation for dual-core support 
was supplied by Sandia National Lab and is known as  
Catamount Virtual Node or CVN.  This implementation 
used a master and slave processor paradigm for dual-core 
support.  Although initial performance was reasonable, 
for some applications changes were needed at the portals 
layer to allow better performance.  Three of these 
optimizations were send-to-self short circuit optimization, 
symmetric master/slave optimization and portals API 
extensions. 
 
 

Send-to-self short circuit optimization 
 
This optimization uses a memory to memory copy for 

most messages of reasonable size when the source and 
destination are on the same node. This reduces the latency 
by eliminating the round trip of the data to the SeaStar, 
and then back into memory. For very large messages, the 
data still travels out to SeaStar and back to allow 
additional overlap of computation. In this case, the DMA 
engine in the SeaStar is essentially substituting for the 
Opteron based memcpy function. This change was added 
to the 1.4.28 and 1.5.07 XT releases. 

 
Symmetric master/slave optimization 

 
The original master/slave design of CVN had all 

portals processing confined to core 0. This resolved a 
variety of synchronization issues. The primary downside 
to it is that this interferes with computation on core 0, as 
well as adding latency by having all core 1 portals 
operations forwarded to core 0 for processing. This 
optimization strives to reduce the latency impact by 
performing most all portals processing on the core that 
they were requested from. This means that when the 
process executing on core 1 issues the syscall to do a 
portals PUT, the processing remains on core 1, all the way 
through the request to the SeaStar. A single large portals 
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lock maintains proper synchronization. Interrupts from 
the SeaStar are still directed to core 0 for servicing.  

This optimization is most beneficial when core 1 is 
doing communication, while core 0 is doing computation. 
When both cores are actively doing communication, much 
of the benefit is lost due to lock contention, as well as 
Opteron cache thrashing. This change was added in the 
1.4.28 and 1.5.07 XT releases. 

Future work includes finer grained locking under 
CNL to reduce lock contention.  
 
Portals API extensions 

 
This change extended the Portals API by three new 

entry points. These new functions are called 
PtlMEMDPost, PtlMEMDInsert, and PtlMEMDAttach. 
All three of these functions are essentially amalgams of 
already existing Portals functions. The first of these 
(PtlMEMDPost) essentially combines the actions of 
PtlMEInsert, PtlMDAttach, and PtlMDUpdate. This 
particular sequence is used for posting an MPI receive. 
The combination replaces three distinct system calls with 
one, thereby reducing the overall cost. This change was 
added in the 1.4.28 and 1.5.07 XT releases. 

3. MPT improvements 

Several MPT optimizations have been implemented 
that should improve performance on user applications. 
Some of these have been enabled by default others get 
enabled when an environment variable is set.  One of the 
optimizations that have been enabled by default is the use 
of PtlMEMDPost mentioned above and was made 
available in the 1.4.28 and 1.5.07 XT release. 

Another default optimization has been improvements 
to the SHMEM reductions and broadcast collectives 
which show improvements of more than 40% over the 
previous versions.  This optimization is in 1.4.30 and 
1.5.09 versions of the XT software. 

It is the goal of the MPT development group to 
enable optimizations by default.  Some optimizatons may 
degrade performance in certain cases and for that reason 
they are not enabled by default.  Further detail of these 
optimizations will be given here.   It is our hope that 
many of these will be enabled by default in future releases 
as they are improved to handle all performance 
degradations.   These recently added non-default 
optimizations are rank placement, multi-core optimized 
collectives, optimized memcpy  and disabling of portals 
message matching. 

 
Rank Placement 

 
The default yod rank placement on dual-core XT 

systems may not be optimal for many applications.  For 

example, for a yod-launched 8 process (4 node) MPI job 
on dual-core nodes, the default placement would be: 
 
Node 0 1 2 3 

Rank 0&4 1&5 2&6 3&7 
 

 
 A new MPI environment variable has been 

implemented that allows users to change this placement.  
The MPICH_RANK_REORDER_METHOD 
environment variable can be set to three different 
placement schemes.  Setting the variable to "1" will cause 
MPI ranks to be assigned according to SMP placement.  
For example, using the SMP method an 8 process (4 
node) MPI job on dual-core nodes, the rank placement 
would be: 

 
 

Node 0 1 2 3 

Rank 0&1 2&3 4&5 6&7 
 

 
Setting MPICH_RANK_REORDER_METHOD to 

"2" will cause ranks to be assigned according to a folded-
rank placement and has been known to help some 
applications. Instead of rank placement starting over on 
the first node when half of the MPI processes have been 
placed, this option places the N/2 process on the last node, 
going back to the initial node. For example, using the 
folded-rank method an 8 process (4 node) MPI job on 
dual-core nodes, the rank placement would be: 

 
Node 0 1 2 3 

Rank 0&7 1&6 2&5 3&4 
 

 
Finally, some applications may benefit from fully 

specifying how ranks are placed and setting 
MPICH_RANK_REORDER_METHOD to "3" will 
enable custom rank placement.  The custom rank 
placement option will cause the MPI library to look in the 
file called MPICH_RANK_ORDER for placement 
information.  A comma separated list of ranks as well as 
hyphenated syntax is supported and can be mixed. The 
MPICH_RANK_ORDER file must be readable by all 
ranks in the current running directory. The order in which 
the ranks are listed in the file determines which ranks are 
placed closest to each other. This is most helpful for dual-
core nodes.  For example: 
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Syntax Rank Placement 
0-15 Places the ranks in SMP-style order 
15-0 Places ranks 15&14 on the first node, 

13&12 on the next, etc. 
0,5,1,4,2,3,6,7 Places ranks 0&5 on the first node, 1&4 

on the next, 2&3 together and 6&7 
together. 

 
 

The rank placement feature was made available in the 
1.4.30 and 1.5.08 XT releases.  The following charts show 
how SMP style placement improves performance while 
comparing the IMB/Pallas Benchmarks for PingPong, 
Allreduce, Alltoall and Bcast.    In the following charts 
the top(dark line) is the default and the lighter is with the 
optimization enabled.  All runs were done using 128pes.  
The PingPong test really is comparing on-node vs. across 
node since we are only using the 2 pe case which with 
SMP ordering, rank 0 and 1 are on the same node and 
with default placement they are not. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
For Allreduce SMP placement was 7% to 32% faster 
above 16K bytes. 
 

 
 
For Alltoall SMP placement was 13% to 36% faster 
above 16K bytes. 
 
 

 
 
For Bcast SMP placement was 12% faster at 8 bytes and 
45% faster at 1MB. 
 
Multi-core Optimized Collectives 
 

The XT MPICH2 supports a framework for 
implementing optimized collective functions, leveraging 
infrastructure already in place within the standard 
MPICH2 distribution.  The framework is structured to 
take advantage of multi-core nodes:  a network based 
component utilizes portals, while an on-node component 
can take advantage of any possible on-node 
communication mechanism (shared memory, for 
example). 

Currently in the XT MPICH2 running on catamount 
compute nodes, portals is used both for intra-node and 
inter-node communication. 

At this time only two collective operations are 
actually defined in the framework: MPI_Allreduce and 
MPI_Barrier.  These optimizations can be enabled by 
setting the MPI_COLL_OPT_ON environment variable.  
The following chart shows the speed-up of 
MPI_Allreduce  using the IMB/Pallas benchmarks.  The 
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range of speed-up was around 5% at 1MB to 40% at 8 
bytes over the default for MPI_Allreduce.  MPI_Barrier 
was about 30% faster up to 256 pes than the default. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Other functions, either implemented internally in the 

MPICH2 library, or in external libraries, can readily be 
incorporated into the framework.  This optimization was 
introduced in the 1.4.32 and 1.5.11 XT releases. 
 
Optimized Memcpy 
 

Setting the MPICH_FAST_MEMCPY environment 
variable enables use of an optimized memcpy routine in 
the XT MPICH2.  This optimized memcpy routine, 
written in assembly for the XT architechture makes use of 
such features as loop unrolling, non-temporal memory 
references and prefetching to provide superior memcpy 
performance.  When compared to the default Catamount 
memcpy performance, the optimized memcpy is nearly 
4X faster for 1 megabyte copies.  As noted in the chart 
below, the memcpy performance varies greatly with the 
size of the data being copied.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In MPICH, when the optimized memcpy is enabled, 

it is used for all local memory copies in the point-to-point 
and collective MPI operations. This includes copying 
local data out of the unexpected buffers into the user 

buffers on the receive-side, copying user data to internal 
MPI buffers on the send-side, and creating temporary 
copies of data buffers for some collective operations.  The 
optimized memcpy is not currently used in the MPI I/O 
routines, or for derived data types. 

Given the different characteristics of the memcpy 
routines, including cache effects, the effect of using the 
optimized memcpy in MPICH is not as straight forward 
as the raw memcpy performance indicates.  Even though 
the optimized memcpy is faster in raw performance, some 
MPI collectives, as seen with the Pallas benchmark suite, 
show a performance degradation with certain message 
sizes when using the optimized memcpy. 

Other message sizes show a substantial performance 
gain.  For this reason, we have chosen not to enable the 
optimized memcpy as the default, but to allow users to 
select this optimized memcpy if their application 
performance can benefit from it. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
For Allreduce the fast memcpy shows more than a 13% 
performance improvement above 256K bytes.  This 
optimization was added to 1.4.46 and 1.5.30 XT releases. 
 
 
 
Disabling of Portals Message Matching 
 

Setting the MPICH_PTL_MATCH_OFF 
environment variable disables registration of receive 
requests with portals.  This option can significantly 
improve performance for latency-sensitive applications, 
especially on dual-core nodes.  When setting this variable, 
receive requests (via MPI_Recv() and it's variants) are 
never posted to the portals-managed queue, but instead 
are tracked and matched via an internal MPI queue.  
When the application posts a receive request, setting 
MPICH_PTL_MATCH_OFF saves the cost of the portals 
system call, as well as eliminating the portals lock that is 
held during that portals call.  When a message is received 
via portals, since no receive requests are posted to portals, 
all messages are copied to the unexpected message 

Allreduce multi-core optimization 256 pes
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buffers.  MPI polls the portals event queues, and when the 
message transfer to the unexpected buffer is complete, 
MPI copies the data to the user buffer specified in the 
receive request.  An extra copy is introduced is this path, 
but for small mesages (less than 4096 bytes) that time is 
mimimal. 

 
When messages become larger (4096 bytes - 128K 

bytes), the extra local copy can become significant, and in 
some cases, disabling the portals receive matching causes 
a performance degradation in MPI messaging. 

 
For very large messages sent via the rendezvous 

protocol (greater than 128K bytes), MPI uses the portals 
'GET' protocol.  In either case, whether MPI or portals is 
performing the matching, no extra copy of the data is 
incurred, since portals only initially sends a message 
header.  Once this header is matched to a posted receive 
(either via portals or MPI matching), then the GET is 
invoked, and the data is transfers directly into the user 
specified buffer.  Performance for these very large 
message transfers usually does not change if 
MPICH_PTL_MATCH_OFF is set or not. 

Due to the nature of how portals performs a GET, 
subtle timing differences in the initiating of these 
requests, especially when performing bi-directional large 
data transfers on dual-core nodes, can play a significant 
role in the performance.  Certain sequencing of events can 
lead to the serialization of bi-directional traffic in Portals. 
We have seen cases where setting 
MPICH_PTL_MATCH_OFF can almost double bi-
directional large message bandwidth, as well as cases 
where this variable has little or no effect on bandwidth.  
The chart below shows the improvement in PingPong 
latency with small message sizes when 
MPICH_PTL_MATCH_OFF is set and how it gets worse 
for larger messages. 

 
MPI Latency Comparison (on-node in usecs) 
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One could imagine a superior performing solution 
would be to have MPI handle the message matching for 
small messages, and portals handle the matching for 
larger messages.  However, this requires careful analysis, 

as it can be difficult to preserve the MPI ordering 
semantics in this scenario, especially with the posting of 
ANY_SRC receives.  The MPT team will be looking into 
providing this functionality in the future.  This 
optimization was enabled in the 1.4.50 and 1.5.39 XT 
releases. 

4. MPT Functional Improvements 

In addition to the previously mentioned performance 
improvements several functional improvements have been 
recently added.  These include an updated intro_mpi man 
page,  default64 support, Pathscale  and GNU 4.1.1 
compiler support. 

The intro_mpi man page has been updated to contain 
more information about the environment variables that are 
supported and their default values.  This man page should 
be checked often to learn of XT specific optimizations.   

The PGI compiler supports the Ò-i8Ó and Ò-r8Ó 
compiler options which modify the default integer and 
real Fortran size to 8 bytes.   Users who have existing 
codes that require this can now use the Ò-default64Ó 
option which will automatically add the PGI command-
line options and pull in special versions of the MPI and 
SHMEM libraries. 

When the Pathscale or GNU 4.1.1 modules are 
loaded, corresponding MPI and SHMEM libraries will 
automatically be loaded. 

Some early XT3 users began using the ÒmpiccÓ, 
Òmpif77Ó and Òmpif90Ó commands.  Although these are 
available, they are not officially supported and may be 
removed in the future.    Users should use the ÒccÓ and 
ÒftnÓ commands which are fully supported and are needed 
to fully benefit from much of the recently added 
functionality. 

5. Future MPT Improvements 

With the XT 2.0 release support for Compute Node 
Linux(CNL) will be available.  This will include support 
for MPI and SHMEM.   These libraries will use ÒaprunÓ 
to launch and instructions on how to launch can be 
obtained from the aprun  man page.    Another feature of 
CNL is that the default placement on CNL will be SMP 
placement.   Since CNL allows memory mapping a future 
version of the MPI library will support the ability to 
communicate within a multi-core node using shared 
memory rather than calling the portals interface. 

The XT MPI-IO implementation is based on the 
ROMIO implementation from Argonne National 
Lab(ANL).   Several ROMIO optimizations are not 
enabled by default for collective I/O.     These can be 
enabled by using the MPI_Info_set routine to set these 
hints.   For example: 
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CALL MPI_Info_create(infoh, ierror )  
CALL MPI_In fo_set(infoh, 'romio_cb_write',  
   'enable', ierror )  
 

We are working on a mechanism to more easily enable 
these hints using environment variables. 

The new faster memcpy mentioned earlier has been 
limited to certain areas of the MPI library.   Areas that are 
not currently using this fast memcpy are being examined 
to see if they will also benefit.  These include MPI-IO and 
derived datatypes.  In addition, other uses of the faster 
memcpy routine within the OS are also being examined. 

Another feature that is planned to be supported is 
shared libraries on CNL. 

6. Conclusion 

      The many improvements to the MPT software and 
underlying portals software stack have been shown to 
improve the IMB/Pallas benchmarks in many cases.  The 
real test of these improvements are how they will perform 
on real applications.  Some initial data for real 
applications look promising when using these 
optimizations.   The MPT team is committed in 
developing new optimizations and new functionality to 
make the MPT software both easy to use and highly 
optimized. 
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